Doubly Discrete Lagrangian Systems Related to the Hirota and Sine-gordon Equation

نویسنده

  • Claudio Emmrich
چکیده

We extend the action for evolution equations of KdV and MKdV type which was derived in NC] to the case of not periodic, but only equivariant phase space variables, introduced in FV2]. The diierence of these variables may be interpreted as reduced phase space variables via a Marsden-Weinstein reduction where the monodromies play the role of the momentum map. As an example we obtain the doubly discrete sine-Gordon equation and the Hirota equation and the corresponding symplectic structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations

  In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...

متن کامل

Generalized solution of Sine-Gordon equation

In this paper, we are interested to study the Sine-Gordon equation in generalized functions theory introduced by Colombeau, in the first we give result of existence and uniqueness of generalized solution with initial data are distributions (elements of the Colombeau algebra). Then we study the association concept with the classical solution.

متن کامل

Soliton evolution and radiation loss for the sine-Gordon equation.

An approximate method for describing the evolution of solitonlike initial conditions to solitons for the sine-Gordon equation is developed. This method is based on using a solitonlike pulse with variable parameters in an averaged Lagrangian for the sine-Gordon equation. This averaged Lagrangian is then used to determine ordinary differential equations governing the evolution of the pulse parame...

متن کامل

Ultradiscrete sine-Gordon Equation over Symmetrized Max-Plus Algebra, and Noncommutative Discrete and Ultradiscrete sine-Gordon Equations

Ultradiscretization with negative values is a long-standing problem and several attempts have been made to solve it. Among others, we focus on the symmetrized max-plus algebra, with which we ultradiscretize the discrete sine-Gordon equation. Another ultradiscretization of the discrete sine-Gordon equation has already been proposed by previous studies, but the equation and the solutions obtained...

متن کامل

Lagrangian Formalism in Perturbed Nonlinear Klein-Gordon Equations

We develop an alternative approach to study the effect of the generic perturbation (in addition to explicitly considering the loss term) in the nonlinear Klein-Gordon equations. By a change of the variables that cancel the dissipation term we are able to write the Lagrangian density and then, calculate the Lagrangian as a function of collective variables. We use the Lagrangian formalism togethe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994